×
1 Выберите сертификаты EITC/EITCA
2 Учитесь и сдавайте онлайн-экзамены
3 Пройдите сертификацию своих навыков в области ИТ

Подтвердите свои ИТ-навыки и компетенции в рамках Европейской системы сертификации ИТ из любой точки мира в режиме онлайн.

Академия EITCA

Стандарт аттестации цифровых навыков Европейского института сертификации ИТ, направленный на поддержку развития цифрового общества.

ВОЙДИТЕ В ВАШ АККАУНТ

ОТКРЫТЬ СЧЁТ ЗАБЫЛИ ПАРОЛЬ?

ЗАБЫЛИ ПАРОЛЬ?

БСГ, подожди, я помню!

ОТКРЫТЬ СЧЁТ

Уже есть учетная запись?
ЕВРОПЕЙСКАЯ АКАДЕМИЯ СЕРТИФИКАЦИИ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ - ПРОВЕРКА ВАШИХ ЦИФРОВЫХ НАВЫКОВ
  • регистрация
  • ВХОД
  • ИНФОРМАЦИЯ

Академия EITCA

Академия EITCA

Европейский институт сертификации информационных технологий - EITCI ASBL

Поставщик сертификации

Институт EITCI ASBL

Брюссель, Европейский Союз

Руководящая структура Европейской ИТ-сертификации (EITC) в поддержку ИТ-профессионализма и цифрового общества

  • СЕРТИФИКАТЫ
    • АКАДЕМИИ EITCA
      • КАТАЛОГ АКАДЕМИЙ EITCA<
      • EITCA/CG КОМПЬЮТЕРНАЯ ГРАФИКА
      • EITCA/IS ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ
      • EITCA/BI БИЗНЕС-ИНФОРМАЦИЯ
      • КЛЮЧЕВЫЕ КОМПЕТЕНЦИИ EITCA/KC
      • EITCA/EG E-GOVERNMENT
      • ВЕБ-РАЗРАБОТКА EITCA/WD
      • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ EITCA/AI
    • EITC СЕРТИФИКАТЫ
      • КАТАЛОГ СЕРТИФИКАТОВ EITC<
      • СЕРТИФИКАТЫ КОМПЬЮТЕРНОЙ ГРАФИКИ
      • СЕРТИФИКАТЫ ВЕБ-ДИЗАЙНА
      • СЕРТИФИКАТЫ 3D ДИЗАЙНА
      • ОФИС СЕРТИФИКАТЫ
      • БИТКОИН БЛОКЧЕЙН СЕРТИФИКАТ
      • СЕРТИФИКАТ WORDPRESS
      • СЕРТИФИКАТ ОБЛАЧНОЙ ПЛАТФОРМЫНОВЫЕ
    • EITC СЕРТИФИКАТЫ
      • СЕРТИФИКАТЫ ИНТЕРНЕТА
      • КРИПТОГРАФИЯ СЕРТИФИКАТЫ
      • БИЗНЕС СЕРТИФИКАТЫ
      • СЕРТИФИКАТЫ ТЕЛЕВИДЕНИЯ
      • СЕРТИФИКАТЫ ПРОГРАММИРОВАНИЯ
      • ЦИФРОВОЙ ПОРТРЕТ СЕРТИФИКАТ
      • СЕРТИФИКАТЫ РАЗРАБОТКИ ВЕБ-РАЗРАБОТКИ
      • СЕРТИФИКАТЫ ГЛУБОКОГО ОБУЧЕНИЯНОВЫЕ
    • СЕРТИФИКАТЫ ДЛЯ
      • ПУБЛИЧНОЕ УПРАВЛЕНИЕ ЕС
      • УЧИТЕЛЯ И УЧИТЕЛЯ
      • ИТ-БЕЗОПАСНОСТЬ ПРОФЕССИОНАЛОВ
      • ГРАФИЧЕСКИЕ ДИЗАЙНЕРЫ И ХУДОЖНИКИ
      • БИЗНЕСМЕНЫ И МЕНЕДЖЕРЫ
      • БЛОКЧЕЙН РАЗРАБОТЧИКИ
      • ВЕБ-РАЗРАБОТЧИКИ
      • ЭКСПЕРТЫ ОБЛАЧНОГО ИИНОВЫЕ
  • НОВИНКИ
  • СУБСИДИЯ
  • КАК ЭТО РАБОТАЕТ
  •   IT ID
  • О КОМПАНИИ
  • Контакт
  • МОЙ ЗАКАЗ
    Ваш текущий заказ пуст.
EITCIINSTITUTE
CERTIFIED
Вопросы и ответы, обозначенные тегом: Выбор модели

Можно ли применять более одной модели в процессе машинного обучения?

Вторник, 13 мая 2025 by Марк Маседо

Вопрос о том, можно ли применять более одной модели в процессе машинного обучения, весьма актуален, особенно в практическом контексте анализа данных реального мира и предиктивного моделирования. Применение нескольких моделей не только осуществимо, но и является широко распространенной практикой как в исследованиях, так и в промышленности. Этот подход возникает

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Первые шаги в машинном обучении, 7 шагов машинного обучения
Теги: Искусственный интеллект, AutoML, Компромисс между смещением и дисперсией, Наука данных, Ансамбль, Google Cloud, Машинное обучение, Развертывание модели, Оценка модели, Выбор модели

Какую первую модель можно использовать для работы, и есть ли какие-то практические рекомендации для начала?

Воскресенье, 11 мая 2025 by Мохаммед Халед

Приступая к изучению искусственного интеллекта, особенно с упором на распределенное обучение в облаке с использованием Google Cloud Machine Learning, разумно начинать с базовых моделей и постепенно переходить к более продвинутым парадигмам распределенного обучения. Этот поэтапный подход позволяет достичь всестороннего понимания основных концепций, развития практических навыков,

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Дальнейшие шаги в машинном обучении, Распределенное обучение в облаке
Теги: Искусственный интеллект, Руководство для начинающих, Cloud Computing, Параллелизм данных, Распределенное обучение, Google Cloud, Машинное обучение, Выбор модели, Нейронные сети, Управление ресурсами, TensorFlow

Как выбор алгоритма машинного обучения зависит от типа задачи и характера данных?

Суббота, 26 апреля 2025 by Мохаммед Халед

Выбор алгоритма машинного обучения является критически важным решением при разработке и развертывании моделей машинного обучения. Это решение зависит от типа решаемой проблемы и характера доступных данных. Понимание этих факторов важно до обучения модели, поскольку это напрямую влияет на эффективность, результативность и

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Первые шаги в машинном обучении, 7 шагов машинного обучения
Теги: Искусственный интеллект, Анализ данных, Машинное обучение, Выбор модели, Контролируемое обучение, Обучение без учителя

Как узнать, какую модель машинного обучения использовать, до ее обучения?

Вторник, 15 апреля 2025 by Мафальда Паес де Карвалью

Выбор подходящей модели машинного обучения перед обучением является важным шагом в разработке успешной системы ИИ. Выбор модели может существенно повлиять на производительность, точность и эффективность решения. Чтобы принять обоснованное решение, необходимо учитывать несколько факторов, включая характер данных, тип проблемы, вычислительные

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Введение, Что такое машинное обучение
Теги: Искусственный интеллект, Наука данных, Машинное обучение, Выбор модели, Контролируемое обучение, Обучение без учителя

Когда в материалах для чтения говорится о «выборе правильного алгоритма», означает ли это, что в принципе все возможные алгоритмы уже существуют? Как мы узнаем, что алгоритм является «правильным» для конкретной проблемы?

Вторник, 11 февраля 2025 by МЛ САВИ

При обсуждении «выбора правильного алгоритма» в контексте машинного обучения, особенно в рамках искусственного интеллекта, предоставляемого такими платформами, как Google Cloud Machine Learning, важно понимать, что этот выбор является как стратегическим, так и техническим решением. Речь идет не просто о выборе из уже существующего списка алгоритмов

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Введение, Что такое машинное обучение
Теги: Алгоритмы, Искусственный интеллект, Наука данных, Машинное обучение, Выбор модели, Нейронные сети

Каковы практические правила выбора конкретной стратегии и модели машинного обучения?

Пятница, Январь 17 2025 by Альберто Делла Либера

При рассмотрении принятия определенной стратегии в области машинного обучения, особенно при использовании глубоких нейронных сетей и оценщиков в среде Google Cloud Machine Learning, следует учитывать несколько основополагающих правил и параметров. Эти рекомендации помогают определить целесообразность и потенциальный успех выбранной модели или стратегии, гарантируя, что

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Первые шаги в машинном обучении, Глубокие нейронные сети и оценщики
Теги: Искусственный интеллект, Наука данных, Google Cloud, Машинное обучение, Выбор модели, Нейронные сети

Какие параметры указывают на то, что пора переходить от линейной модели к глубокому обучению?

Пятница, Январь 17 2025 by Альберто Делла Либера

Определение того, когда следует переходить от линейной модели к модели глубокого обучения, является важным решением в области машинного обучения и искусственного интеллекта. Это решение зависит от множества факторов, включая сложность задачи, доступность данных, вычислительные ресурсы и производительность существующей модели. Линейный

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Первые шаги в машинном обучении, Глубокие нейронные сети и оценщики
Теги: Искусственный интеллект, Глубокое обучение, Линейные модели, Машинное обучение, Выбор модели, Нейронные сети

Алгоритмы машинного обучения могут научиться предсказывать или классифицировать новые, невидимые данные. Что включает в себя разработка прогнозных моделей немаркированных данных?

Четверг, 24 августа 2023 by Войцех Цеслински

Разработка прогнозных моделей для немаркированных данных в машинном обучении включает в себя несколько ключевых шагов и соображений. Немаркированные данные — это данные, которые не имеют предопределенных целевых меток или категорий. Цель состоит в том, чтобы разработать модели, которые могут точно предсказывать или классифицировать новые, невидимые данные на основе шаблонов и взаимосвязей, извлеченных из доступных данных.

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Введение, Что такое машинное обучение
Теги: Искусственный интеллект, Предварительная обработка данных, Функция извлечения, Машинное обучение, Развертывание модели, Оценка модели, Выбор модели, Модельное обучение, Прогнозные модели, Немаркированные данные

Каково определение модели в машинном обучении?

Четверг, 10 августа 2023 by Брайан Бакли

Модель в машинном обучении относится к математическому представлению или алгоритму, который обучается на наборе данных для прогнозирования или принятия решений без явного программирования. Это фундаментальная концепция в области искусственного интеллекта, которая играет важную роль в различных приложениях, от распознавания изображений до обработки естественного языка. В

  • Опубликовано в Искусственный интеллект, EITC/AI/GCML Машинное обучение Google Cloud, Первые шаги в машинном обучении, 7 шагов машинного обучения
Теги: Искусственный интеллект, Google Cloud, Машинное обучение, Выбор модели, Модельное обучение

Как выбор K влияет на результат классификации K ближайших соседей?

Понедельник, 07 августа 2023 by Академия EITCA

Выбор алгоритма K в K ближайших соседей (KNN) играет важную роль в определении результата классификации. K представляет количество ближайших соседей, рассматриваемых для классификации новой точки данных. Это напрямую влияет на компромисс между смещением, границей принятия решения и общей производительностью алгоритма KNN. При выборе значения К,

  • Опубликовано в Искусственный интеллект, Машинное обучение EITC/AI/MLP с Python, Программирование машинного обучения, Введение в классификацию с K ближайшими соседями, Обзор экзамена
Теги: Искусственный интеллект, Компромисс между смещением и дисперсией, классификация, КНН, Машинное обучение, Выбор модели
  • 1
  • 2
Главная

Центр сертификации

МЕНЮ ПОЛЬЗОВАТЕЛЯ

  • Мой аккаунт

СЕРТИФИКАТ КАТЕГОРИИ

  • Сертификация EITC (105)
  • Сертификация EITCA (9)

Что вы ищете?

  • Введение
  • Как это работает?
  • Академии EITCA
  • Субсидия EITCI DSJC
  • Полный каталог EITC
  • Ваш заказ
  • Популярные
  •   IT ID
  • Обзоры EITCA (издание Medium)
  • О Нас
  • Контакты

Академия EITCA является частью Европейской структуры сертификации ИТ.

Европейская структура ИТ-сертификации была создана в 2008 году как европейский и независимый от поставщиков стандарт широкодоступной онлайн-сертификации цифровых навыков и компетенций во многих областях профессиональных цифровых специализаций. Структура EITC регулируется Европейский институт сертификации ИТ (EITCI), некоммерческий орган по сертификации, поддерживающий рост информационного общества и устраняющий разрыв в цифровых навыках в ЕС.

Право на участие в программе EITCA Academy 80% поддержки EITCI DSJC Subsidy

80% оплаты Академии EITCA субсидируется при зачислении

    Офис секретаря Академии EITCA

    Европейский институт сертификации в области ИТ (ASBL)
    Брюссель, Бельгия, Европейский Союз

    Оператор системы сертификации EITC/EITCA
    Управляющий европейский стандарт ИТ-сертификации
    О компании Форму обратной связи или позвоните по телефону +32 25887351

    Следуйте за EITCI на X
    Посетите Академию EITCA на Facebook
    Присоединяйтесь к Академии EITCA в LinkedIn
    Посмотрите видеоролики EITCI и EITCA на YouTube.

    Финансируется Европейским Союзом

    Финансируется Европейский фонд регионального развития (ЕФРР) и Европейский социальный фонд (ESF) в серии проектов с 2007 года, в настоящее время управляется Европейский институт сертификации ИТ (EITCI) с 2008 года

    Политика информационной безопасности | Политика DSRRM и GDPR | Политика защиты данных | Запись действий по обработке | Политика ОТОСБ | Антикоррупционная политика | Современная политика рабства

    Автоматический перевод на ваш язык

    Правила | Персональные данные
    Академия EITCA
    • Академия EITCA в социальных сетях
    Академия EITCA


    © 2008-2025  Европейский институт сертификации ИТ
    Брюссель, Бельгия, Европейский Союз

    ТОП
    Общайтесь со службой поддержки
    Общайтесь со службой поддержки
    Вопросы, сомнения, проблемы? Мы здесь чтобы помочь вам!
    Конец чат
    Подключение ...
    Остались вопросы?
    Остались вопросы?
    :
    :
    :
    Отправьте
    Остались вопросы?
    :
    :
    Начать Чат
    Сеанс чата закончился. Спасибо!
    Пожалуйста, оцените поддержку, которую вы получили.
    Хорошо Плохой